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ABSTRACT
Detecting epileptic EEG signal automatically and accurate-

ly is significant in evaluating patients with epilepsy. In this

study, the immune clonal algorithm (ICA) is employed to

perform automatic feature selection, reducing the number of

features the classifier deals with and improving the classifi-

cation accuracy. In the experiment, EEG signal was decom-

posed into five sub-band components by a discrete wavelet

transform. Features were extracted as input to train three

classifiers (NB, SVM, KNN and LDA) to judge whether the

EEG signal was epileptic or not. Then, ICA was introduced

to select a feature subset to train the classifiers. Experimen-

tal results show that the classification accuracy based on s-

elected features is significantly higher than that on original

features. We also analyzed the relative importance of each

feature.

1. INTRODUCTION

Epilepsy is a neurological disorder and the occurrence of an

epileptic seizure has been unpredictable till now. The elec-

troencephalogram (EEG) signal reflects the electrical activ-

ities of the neurons in the brain, which provides us an ef-

ficient tool to examine brain activity. Though EEG signals

play an important role in evaluating epilepsy, such as deter-

mining epileptogenic zone for presurgical evaluations [1],

checking the long term EEG recordings manually is often

time-consuming and tedious. Thus, a number of machine

learning and pattern recognition algorithms have been in-

troduced to automatically analyze EEG signals [2].

How to detect and classify the epileptic EEG signal au-

tomatically and accurately with machine learning methods

has been studied for several years. Many existing approach-

es for seizure detection and prediction pay attention mainly

to two key aspects of EEG processing schemes: feature ex-

traction and classifier design. Features are usually extracted

by frequency analysis [3], wavelet analysis [4] or a non-

linear method [5]. Adeli and colleagues demonstrated that

individual EEG frequency sub-bands can provide more in-

formation than the entire EEG [6]. Their method decompos-

es the raw EEG signal into five sub-bands corresponding to

delta, theta, alpha, beta and gamma rhythms using a discrete
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wavelet transform, which provides both time and frequency

views simultaneously. A wide range of classifiers which are

prevalent in pattern recognition studies have been applied to

EEG data, like artificial neural networks [7], artificial neuro-

fuzzy inference system [8], learning vector quantization [9],

support vector machine [10], K-nearest neighbor algorithm

[11], linear discriminant analysis [12] and Extreme Learn-

ing Machine [13]. Obviously, the performance of any clas-

sifier depends on whether the extracted features can effec-

tively depict the essential characteristics of raw EEG data.

Recently, many nature-inspired algorithms such as ge-

netic algorithms [9][12] and genetic programming [11][14]

have been used to select a more effective feature subset with

respect to original features. In this paper, the immune clonal

algorithm was employed to select the feature subset, aiming

at improving EEG signal classification accuracy and reduc-

ing the dimensionality of the feature space.

This paper is organized as follows: Section 2 introduces

clinical EEG data and the discrete wavelet transform, which

is an effective non-stationary signal processing tool. After

that, the features for each sub-band are extracted. Then, four

frequently-used classifiers, termed naive bayes (NB), linear

discriminant analysis (LDA), K-nearest neighbor algorith-

m (KNN) and support vector machine (SVM), are briefly

described. Later, the immune clonal algorithm (ICA) and

ICA-based feature selection, which are the key techniques

within the proposed framework, are discussed in detail. In

section 3, the proposed method is used to solve two classi-

fication problems: a two-group classification task (seizure-

free and seizure) and a three-group classification task (nor-

mal, interictal and ictal). Both the mean dimensionality of

selected feature space and the frequencies of each feature in

multiple trials are examined for the two experiments.

2. METHODS AND MATERIALS

2.1. Clinical Data

We developed and evaluated our epileptic EEG classifica-

tion methodology on the publicly available EEG database

provided by the Department of Epileptology, Bonn Univer-

sity, Germany, which was described in [5]. The complete

data set consists of five sets (denoted A-E) each contain-

ing 100 single-channel segments, each of which was 23.6s

in length and sampled at 173.61Hz. Sets A and B consist

of segments taken from surface EEG recordings that were
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carried out on five healthy volunteers using a standardized

electrode placement scheme. Volunteers were relaxed in an

awaken state with eyes open (A) and eyes closed (B), re-

spectively. Sets C, D, and E originated from EEG archive of

presurgical diagnosis. EEGs from five patients were select-

ed, all of whom had achieved complete seizure control after

resection of one of the hippocampal formations, which was

therefore correctly diagnosed to be the epileptogenic zone.

Segments in set D were recorded from within the epilep-

togenic zone, and those in set C were recorded from the

hippocampal formation of the opposite hemisphere of the

brain. While sets C and D contain only activity measured

during seizure free intervals, set E only contains seizure ac-

tivity. All EEG signals were recorded with the same 128-

channel amplifier system, using an average common refer-

ence. Typical EEGs of the five sets are shown in Fig. 1.
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Fig. 1. Examples of five different EEG signal sets.

2.2. Discrete Wavelet Transform

EEG signals are non-stationary and are characterized as spatio-

temporal dependent. Though a Fourier transform (FT) of an

EEG signal can help us obtain its frequency content, the

time information is lost. Taking this problem into consid-

eration, a short time Fourier transform (STFT) is a series

Fourier transform with a fixed time window cannot get a

good balance between time and frequency resolutions. The

wavelet transform (WT) emerged as an effective tool to deal

with non-stationary signals because it can adapt the window

size according to the frequency. At high frequencies, fine

resolution is obtained and at low frequencies, long windows

are used to encompass those frequency contents.

Generally, the raw EEG signals are decomposed into fin-

er sub-band components by a multi-level discrete wavelet

transform (DWT) using high-pass and low-pass filters [6].

After the first level decomposition, two signals which repre-

sent the detail (high frequency) and the approximation (low

frequency) are obtained. The approximate signal can be fur-

ther decomposed by a second-level decompostion, and this

process can continue till the granularity can fulfill the de-

mands.

Raw EEG signals are filtered to remove frequencies above

60 Hz before being put through a multi-level DWT. In this

paper, Daubechies order-4 (DB4) wavelet is chosen as basis

for analyzing the EEG data. After four levels of decom-

position, the original EEG signal is decomposed into five

frequency bands, δ (0-4 Hz), θ (4-8 Hz), α (8-15 Hz), β
(15-30 Hz), and γ (30-60 Hz). Fig. 2 shows the wavelet

decomposition results of EEG samples chosen from set A

and E.
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Fig. 2. Approximation and details of Normal and Epileptic

EEG signals.

2.3. Feature Extraction

After the discrete wavelet transform, the raw EEG signal

is decomposed into sub-band components including sever-

al details (D) and one approximation (A). Each sub-band

signal represents the original signal in different frequen-

cy bands. Because computing the nonlinear features men-

tioned in [14] and [13] is so time-consuming, we prefer

to use some simple statistical features which are capable

of revealing the important time-frequency characteristics of

EEG signals. They are described as follows: (S, l represents

the sub-band signal and the wavelet decomposition level re-

spectively; N is the number of coefficients for details or ap-

proximate at each decomposition level).

1. Mean of the absolute values of each sub-band signal

Fi =
1

N

N∑
j=1

|Sij | (1)

2. Average energy of each sub-band signal

Fi =
1

N

N∑
j=1

|Sij |2 (2)

3. Standard deviation of each sub-band signal

Fi =

√
1

N − 1

N∑
j=1

S2
ij (3)
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4. Fluctuation coefficient of each sub-band signal

Fi =
1

N − 1

N−1∑
j=1

|Si,j+1 − Sij | (4)

5. Skewness of each sub-band signal

Fi =
1

N

N∑
j=1

(
Sij−μi

σi
)2 (5)

where i = 1, 2, . . . , l.
Each raw EEG signal is decomposed into four detail-

s and one approximation using Daubechies order-4 (DB4)

wavelet with level 4. Then, five features mentioned above

are extracted from each sub-band signals. As a result, a fea-

ture vector (F) with 25 elements is generated. The definition

of each element is shown in Table 1.

Table 1. Definition of each element in feature vector.
�����������Feature

Frequency
δ θ α β γ

Mean F1 F6 F11 F16 F21

Energy F2 F7 F12 F17 F22

Standard deviation F3 F8 F13 F18 F23

Fluctuation coefficient F4 F9 F14 F19 F20

Skewness F5 F10 F15 F20 F25

The scale of features may be different, so the normal-

ization process is necessary to standardize all features to the

same level before training the classifiers.

2.4. Classifiers

In this study, four popular classifiers: naive bayes, linear

discriminant analysis, K-nearest neighbor algorithm and sup-

port vector machine [15], are employed to evaluate the clas-

sification accuracy of the two above-mentioned classifica-

tion problems.

2.5. ICA Based Feature Selection

Immune clonal algorithm (ICA) is one of the most popu-

lar nature-inspired algorithms. Its main point is to simu-

late the mechanism of how immune system of a vertebrate

resists outside invasion. The excellent performance of im-

mune clonal algorithm makes it useful in solving complex

optimization problems [16]. The immune system’s ability

to adapt its B-cells to new types of antigens is powered by

processes known as clonal selection and affinity maturation

by hyper-mutation [17].

In the artificial immune system, antigens represent the

problem to be solved and constraints, while antibodies rep-

resent candidate solutions. In general, an antibody popu-

lation A = {a1, a2, . . . , an}, ai ∈ Ω, i = 1, 2, . . . , n is an

n-dimensional group of antibodies a (where Ω is the feasible

region and the positive integer n is the size of antibody pop-

ulation A). According to the clonal selection theory [18], a

general iterative flow of an artificial immune system can be

described by the following steps: proportional cloning, re-

combination, hyper-mutation, fitness assignment and pop-

ulation evolution (roulette selection is used in this paper).

The appendix gives the detailed steps of the immune clon-

al algorithm and below is the ICA-based feature selection

method.

Feature selection and dimensionality reduction are im-

portant steps in pattern classification. Current research ap-

plies the immune clonal algorithm to automatically select an

effective feature subset and improve the classification per-

formance.

In this paper, both the population size and the propor-

tional cloning factor Nc are set to 100. The probabilities for

recombination and hyper-mutation are 0.9 and 0.1 respec-

tively. Each antibody consists of 25 genes, each of which

is set to binary, namely 0 or 1 and each gene represents the

corresponding feature described in Table 1. A value of 0

implies that the corresponding feature is excluded from the

feature set, while 1 indicates the feature is included. The ini-

tial population is generated randomly. The fitness functions

for the 2-group classification (f 1) and the 3-group classifi-

cation (f 2) are

f1 = (e1 + e2)/2 (6)

and

f2 = (e1 + e2 + e3)/3, (7)

where e1, e2 in Eqn.(6) are the misclassification rates of

the classifier in the seizure-free (set A, C) and seizure (set

E) groups respectively. Similarly, e1, e2 and e3 in Eqn.(7)

are the misclassification rates of the classifier in the normal

group (set A, B), interictal group (set C, D) and ictal group

(set E) respectively. The training samples are used to train

the classifiers for classification. The misclassification rates

are obtained by calculating the error counts of the classifi-

cation. The iterative aim is to minimize the fitness function

and the algorithm terminates when maximum generation is

reached.

The whole flow of feature selection using the immune

clonal algorithm is depicted in Fig. 3.
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Fig. 3. Diagram of the ICA based feature selection.

3. EXPERIMENTAL RESULTS

In the present study, two classification problems are con-

sidered; the EEG signals are divided into two (seizure-free

and seizure) groups or three groups (normal, interictal and

ictal). Accordingly, different clinical datasets are used for

the different tasks. For the former task, three datasets (A,

C and E) are examined and they should be classified into

the seizure-free (set A, C) and seizure (set E) groups. For
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the latter task, all five datasets (A, B, C, D and E) are used;

they should be classified into the normal group (set A, B),

interictal group (set C, D) and ictal group (set E).

Each EEG segment containing 4096 points for each class

(normal, interictal and ictal) was divided into four equal e-

poches; thus, each segment will form 400 samples. In the

recently published literature, nearly all the training and test-

ing samples are randomly selected [11][12][13]. Because

the EEG signal are timing dependent and the pathological

state can only be predicted by obtained EEG signal, the for-

mer 200 samples per class are chosen for training and the

latter 200 samples for testing in this paper.

3.1. Classification with all Features

To classify EEG signals into two groups (seizure-free and

seizure) and three groups (normal, interictal and ictal), all

features are used to train NB, LDA, KNN and SVM with

linear and RBF kernel functions and k is set to 3 in KNN.

For SVM classifier, the kernel-related optimal parameters

are tuned by 5-fold cross-validation for classification. This

process are repeated twenty times and the mean and stan-

dard deviation of classification accuracies of different clas-

sifiers are summarized in Table 2 and Table 3.

Table 2. Classification accuracy with all features.

Seizure-free Seizure Avg
NB 95.25 86.50 92.33

LDA 95.00 96.50 95.50
KNN 95.25 95.50 95.33

SVML 96.00 94.50 95.50
SVMRBF 97.75 98.00 97.83

Table 3. Classification accuracy with all features.

Normal Interictal Ictal Avg
NB 78.00 88.00 53.50 77.10

LDA 94.75 93.00 96.00 94.30
KNN 96.25 93.00 95.50 94.80

SVML 96.75 93.25 93.00 94.60
SVMRBF 98.75 96.75 96.50 97.50

In table 3, the accuracy obtained by naive bayes classi-

fier is relatively low. The possible reason is that the con-

ditional independence assumption is not tenable in 3-group

classification problem. Patients in interictal period is really

with epilepsy; however, in this study we classify the interic-

tal and ictal patients into different classes.

3.2. Classification with Selected Features

The immune clonal algorithm is then used for selecting the

optimal feature subset to maximize the classification accu-

racies. Each of the accuracies is the mean of twenty in-

dependent trials with timing-dependent training and testing

data, which means that both the training and testing data are

fixed. The accuracies of different classifiers are summarized

in Table 4 for two-class experiment and Table 5 for three-

group experiment. From these two tables, it is clear that the

mean accuracies obtained with the selected feature subset

are obviously higher than the accuracies obtained with al-

l features. Overall, SVM with an RBF kernel outperforms

the remaining classifiers for both tasks. The results confirm

the value of the immune clonal algorithm as a feature selec-

tor for seizure detection based on EEG signals.

Table 4. Classification accuracy with features selected by

immune clonal algorithm.

Seizure-free Seizure Avg
NB 95.26(0.01) 92.63(0.02) 94.38(0.01)

LDA 95.61(0.22) 98.40(0.48) 96.54(0.14)
KNN 97.19(0.33) 96.68(0.59) 97.00(0.26)

SVML 96.63(0.21) 97.18(0.52) 96.81(0.59)
SVMRBF 98.39(0.22) 99.43(0.44) 98.73(0.12)

Table 5. Classification accuracy with features selected by

immune clonal algorithm.

Normal Interictal Ictal Avg
NB 78.84(2.47) 89.00(1.95) 70.75(4.17) 81.29(0.89)

LDA 96.54(0.58) 93.05(0.34) 95.83(0.94) 95.00(0.12)
KNN 97.58(0.73) 94.60(0.73) 95.75(1.08) 96.02(0.18)

SVML 98.40(0.21) 94.96(0.09) 94.10(0.35) 96.17(0.05)
SVMRBF 99.78(0.16) 98.68(0.34) 98.00(0.69) 98.98(0.13)

For showing the efficiency of ICA based feature selec-

tion algorithm, we compare it with the popular particle swar-

m optimization (PSO) based feature selection. Table 6 and

Table 7 give the results for two classification problems. The

classification accuracies based on ICA and PSO selected

features are obviously better than accuracies based on o-

riginal features. Generally, the proposed algorithm slightly

outperforms the PSO based feature selection algorithm in

classification accuracies.

Table 6. Classification accuracy with features selected by

particle swarm optimization.

Seizure-free Seizure Avg
NB 95.25(0.02) 90.45(0.05) 93.65(0.01)

LDA 95.53(0.20) 97.28(0.53) 96.11(0.16)
KNN 95.81(0.64) 96.43(1.07) 95.97(0.36)

SVML 96.08(0.32) 95.88(0.60) 95.98(0.14)
SVMRBF 98.17(0.32) 98.92(0.69) 98.42(0.23)

Table 7. Classification accuracy with features selected by

particle swarm optimization.

Normal Interictal Ictal Avg
NB 75.10(3.54) 88.23(1.99) 72.404.15) 79.82(1.23)

LDA 95.38(0.50) 93.01(0.25) 95.49(0.92) 94.48(0.10)
KNN 96.54(0.70) 93.98(0.57) 95.75(0.82) 95.32(0.17)

SVML 98.18(0.47) 95.03(0.23) 94.23(0.41) 96.12(0.08)
SVMRBF 99.11(0.33) 97.96(0.20) 97.45(0.22) 98.32(0.13)

For each classifier, the feature selection using ICA and

PSO are run for twenty independent trials. After twenty tri-

als, mean dimensionality of selected feature space is checked

in the results of twenty trials; this is shown in Fig. 4.

From Fig. 4, the dimensionality of the selected feature

subspace based on ICA is obviously lower than that based

on PSO. The former is around twelve for the two-group

classification task while it is slightly more (about 15) for

SVM with RBF kernel, which is far less than the dimen-

sionality of the original feature space (25). For the three-

group classification task, the mean dimensionality of the s-

elected feature subspace is located in 15-19. It makes sense
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(b) features selected by different algorithms for 2-group classifica-

tion.

Fig. 4. The dimensionality of selected feature space.

that more features are needed to detect the differences a-

mong three classes than for two classes. The latter is around

twenty for the two-group classification task and twenty-two

for the three-group classification task. This means the PSO

based feature selection algorithm is less efficient than ICA

based feature selection algorithms in this study.

3.3. Features Selected by Immune Clonal Algorithm

The frequencies of each feature’s being selected can be found

more clearly from Fig. 5. Features located in δ and γ band

signals are encouraged by two-group classification task while

EEG components in all the frequency bands except the θ are

beneficial to three-group classification. The application of

wavelet decomposition to EEG data prior to feature calcula-

tion enables the extraction from sub-band components. An-

alyzing features selected by the immune clonal algorithm

reveals the probable relative importance of individual fea-

tures from specific sub-band to the accuracy of the classi-

fier. It will be more efficient and accurate to automatically

detect seizure based on the features selected by the immune

clonal algorithm instead of using all features. This study in

the field of information science may lead toward decoding

the mental status corresponding to some specific frequency

bands in physiology.

4. CONCLUSION

The present work develops an approach using four differen-

t classifiers (NB, SVM, KNN and LDA) with features ex-

tracting from wavelet decomposition based sub-bands EEG
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(a) Statistical results of features selected by ICA for 2-group clas-
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Fig. 5. Statistical results of features selected by ICA.

signals for automatic epileptic seizure detection. The im-

mune clonal algorithm, a popular nature-inspired algorithm,

is employed for feature subset selection. The results demon-

strate the effectiveness of using simple sub-band EEG s-

tatistical features. The performance of all three classifiers

with features selected by the immune clonal algorithm is

improved significantly. The relative importance of the ex-

tracted features can be evaluated by the frequencies of fea-

tures being selected in independent trials. More importantly,

the proposed method can be used as a subsidiary method for

automatically detecting epileptic seizure in clinical practice.

5. APPENDIX IMMUNE CLONAL ALGORITHM

The main steps of immune clonal algorithm which is used

to select feature subset can be described as follows.

1. Proportional Cloning. In immunology, cloning mean-

s asexual propagation so that a group of identical cells can

be descended from a single common ancestor, for exam-

ple a bacterial colony whose members arise from a single

original cell as the result of mitosis. In this study, the pro-

portional cloning operator TC on the antibody population
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A = {a1, a2, . . . , a|A|} is defined as

A1(k) = TC(a1, a2, . . . , a|A|)
= TC(a1) + TC(a2) + . . .+ TC(a|A|)
= (a11, a

2
1, . . . , a

q1
1 ) + . . .+ (a1|A|, a

2
|A|, . . . , a

q|A|
|A| )

where k is the k-generation and qi, i = 1, 2, . . . , a|A| is a

adaptive parameter determined by the fitness value of each

antibody to control the clonal size of each original ancestor.

It means that the antibody with a greater fitness value will

clone a larger number of offspring. So the values of qi can

be properly calculated as

qi = �NC × f(ai)/

|A|∑
j=1

f(aj)� (8)

where NC is an expectant value of the size of the clone pop-

ulation [16]. Alternatively, qi can be set as a constant.

2. Recombination. If C = {c1, c2, . . . , c|C|} is the

population after applying the proportional cloning opera-

tor A = (a1, a2, . . . , a|A|), then the recombination operator

TR on the clone population C is defined as

A2(k) = TR(c1, c2, . . . , c|C|)
= TR(c1) + TR(c2) + . . .+ TR(c|C|)
= crossover(c1, A) + . . .+ crossover(c|C|, A)

where mutate(ci, A), i = 1, 2, . . . , |C| denotes the offspring

generated by crossover operator on clone ci and an antibody

randomly selected from A.

3. Hyper-mutation. If R = {r1, . . . , r|R|} is the result-

ing population after recombination, then the hyper-mutation

operator TM on the clone population R is defined as

A3(k) = TM (r1, r2, . . . , r|R|)
= TM (r1) + TM (r2) + . . .+ TM (r|R|)
= mutate(r1) + . . .+mutate(r|R|)

where mutate(ri), i = 1, 2, . . . , |R| denotes changing each

element of the variable vector ri by a general mutation op-

erator with probability Pm, so each individual in the clone

population R at each time step will undergo about m× Pm

mutations, where m is the dimension of the variable vector.

4. Fitness Assignment and Population Evolution. The

fitness evaluation is the most important step in population

evolution and it is the fitness value that determines the evo-

lutionary direction of the clone population. Generally s-

peaking, the fitness function will be constructed according

to the goal of real optimization problem. After the fitness

value of each antibody in clone population is computed, a

proper method will be employed to generate a population as

the initial population in the next iteration. In this way, the

population evolves from generation to generation, and the

optimal solution of the target problem will be approximat-

ed.
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